Matrix Decompositions - Overview
Introduction
Overview of SVD, positive definite matrices, and key matrix factorizations.
Key Concepts
Singular Value Decomposition (SVD)
- A = UΣVᵀ for any matrix A
- Geometric interpretation
- Applications to data science and ML
Positive Definite Matrices
- Tests for positive definiteness
- xᵀAx > 0 for all x ≠ 0
- Connection to eigenvalues
- Applications to optimization
Minimum Principles
- Rayleigh quotient
- Variational characterization of eigenvalues
Matrix Factorizations Summary
- LU, QR, Eigenvalue, SVD
- When to use each
Applications
- Principal Component Analysis (PCA)
- Low-rank approximations
- Optimization
- Numerical stability
References
- Strang Chapter 6.2, 6.3, 6.4
- Appendix C
- Deep Dive